Quantum Annealing for Clustering

نویسندگان

  • Kenichi Kurihara
  • Shu Tanaka
  • Seiji Miyashita
چکیده

This paper studies quantum annealing (QA) for clustering, which can be seen as an extension of simulated annealing (SA). We derive a QA algorithm for clustering and propose an annealing schedule, which is crucial in practice. Experiments show the proposed QA algorithm finds better clustering assignments than SA. Furthermore, QA is as easy as SA to implement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Quantum Annealing for Clustering Problems

We develop a hybrid type of quantum annealing in which we control temperature and quantum field simultaneously. We study the efficiency of proposed quantum annealing and find a good schedule of changing thermal fluctuation and quantum fluctuation. In this paper, we focus on clustering problems which are important topics in information science and engineering. We obtain the better solution of th...

متن کامل

Quantum Simulated Annealing

We develop a quantum algorithm to solve combinatorial optimization problems through quantum simulation of a classical annealing process. Our algorithm combines techniques from quantum walks, quantum phase estimation, and quantum Zeno effect. It can be viewed as a quantum analogue of the discrete-time Markov chain Monte Carlo implementation of classical simulated annealing. Our implementation re...

متن کامل

Statistical Seabed Segmentation – from Images and Echoes to Objective Clustering

Acoustic segmentation is the provincing of a survey region based on acoustic characteristics. Geotechnical classification requires further non-acoustic information, in general. QTC systems are capable of segmentation starting with either uncalibrated echoes from a singlebeam sounder, or images from a multibeam system or a sidescan sonar. Unsupervised segmentation requires clustering, in which r...

متن کامل

A simulated annealing algorithm for the clustering problem

In this paper we discuss the solution of the clustering problem usually solved by the K-means algorithm. The problem is known to have local minimum solutions.A simulated annealing algorithm for the clustering problem. The solution of the clustering problem usually solved by the K-means algorithm.In this paper, we explore the applicability of simulated annealing. Clustering problem is investigat...

متن کامل

Model clustering by deterministic annealing

Although training an ensemble of neural network solutions increases the amount of information obtained from a system, large ensembles may be hard to analyze. Since data clustering is a good method to summarize large bodies of data, we will show in this paper how to use clustering on instances of neural networks. We will describe an algorithm based on deterministic annealing, which is able to cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009